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APPROXIMATE METHOD FOR DETERMINING

THE MAXIMUM TEMPERATURE DURING QUASISTATIONARY

HEATING OF A PIECEWISE-HOMOGENEOUS HALF-SPACE

UDC 539.377A. A. Evtushenko,1 E. G. Ivanik,2 and E. A. Evtushenko1

A method is proposed to calculate the maximum temperature of the surface of a piecewise-homogeneous
half-space heated by a uniformly moving, locally distributed heat flow. Analytical solutions of the
corresponding quasistationary heat-conduction problems are obtained for small and large values of the
Peclet number. These solutions are used to derive formulas for calculating the maximum temperature
in the case of intermediate (moderate) values of the Peclet number.

Key words: temperature, heat conduction, fast heating.

Introduction. Increased interest in solving quasistationary heat-conduction problems is motivated by the
formulation of thermal friction problems in [1–5] and studies of other authors. In such formulations, a moving heat
flow distributed in the contact area is specified on the working surface of each of the elements of the friction pair.
The intensity of this frictional heat flow it is equal to the specific friction power — the product of the relative sliding
velocity of the bodies by the shear stress. The latter, in turn, is proportional to the pressure obtained as a result
of solution of the corresponding contact problem. In this case, it is customary to use a uniform or elliptic (Hertz)
distribution of the contact pressure.

This computational scheme is used, in particular, to determine the flash temperature at the sites of frictional
contact between the surface protrusions of rubbing bodies [6]. Because the spots of contact have small sizes,
the corresponding thermal friction problems are formulated for a semi-infinite body (half-space) whose surface is
subjected to a uniformly moving frictional heat flow specified in a bounded region [2, 4, 7, 8]. Analytical solutions
of such problems have been obtained for two limiting values of the sliding velocity: stationary and high-velocity.
In the latter case, in the heat-conduction equation, the second derivative of the temperature with respect to the
independent variable in the sliding direction is ignored [5]. In the case of intermediate (moderate) values of the
Peclet number (Pe), solutions are obtained using interpolation methods based on constructing a priori formulas,
which in particular cases coincide with the well-known stationary and high-velocity solutions [9, 10].

The approach described above is used in the present work to obtain a solution of the three-dimensional
quasistationary thermal-conduction problem for a piecewise-homogeneous body consisting of a layer applied onto
the surface of a half-space. In solving thermal friction problems, the main objective is to obtain a restriction on
the maximum permissible temperature level; therefore, emphasis is placed on constructing engineering formulas for
calculating the maximum temperature of compound bodies.

1. Formulation of the Problem. We consider a piecewise-homogeneous half-space which consists of a
layer of finite thickness d applied onto the surface of a semi-infinite body. A heat flow distributed with intensity q

in a square with side a moves at constant velocity V on the free surface of the layer (Fig. 1). We assume that the
thermal contact of the bodies is perfect and that outside the heating region, the surface of the layer is thermally
insulated.
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Fig. 1. Diagram of heating of the compound body:
1) layer; 2) surface of the semi-infinite body.

Let us introduce a rectangular coordinate system Oxyz with the positive direction of the Ox axis chosen
along the lower side of the square opposite to the direction of motion of the heat flow, the positive direction of
the axis Oy along the left side of the square, and the positive Oz direction normal to the surface inward the
piecewise-homogeneous body. The subscripts 1 and 2 denote the quantities that refer to the layer and half-space,
respectively.

Let us construct a solution of the quasihomogeneous heat-conduction problem:

∂2Tj

∂x2
+

∂2Tj

∂y2
+

∂2Tj

∂z2
=

V

kj

∂Tj

∂x
, j = 1, 2; (1.1)

−K1
∂T1

∂z

∣∣∣
z=0

=
{

q(x, y), 0 6 x, y 6 a,

0, (−∞ < x, y < 0) ∪ (a < x, y < ∞);
(1.2)

K1
∂T1

∂z

∣∣∣
z=d

= K2
∂T2

∂z

∣∣∣
z=d

, −∞ < x, y < ∞; (1.3)

T1(x, y, d) = T2(x, y, d); (1.4)

{T1, T2} → 0 at
√

x2 + y2 + z2 →∞. (1.5)

Here Tj is the temperature, q is the heat-flow intensity, and Kj and kj are the thermal conductivity and temperature
diffusivity, respectively.

In equalities (1.1)–(1.5), converting to the dimensionless variables and parameters

X =
x

a
, Y =

y

a
, Z =

z

a
, δ =

d

a
, K∗ =

K2

K1
; (1.6)

Q(X, Y ) =
q(x, y)

q0
, Pej =

V a

kj
, θj =

TjKj

q0a
, j = 1, 2

(q0 is the maximum intensity of the heat flow), we obtain

∂2θj

∂X2
+

∂2θj

∂Y 2
+

∂2θj

∂Z2
= Pej

∂θj

∂X
, j = 1, 2,

∂θ1

∂Z

∣∣∣
Z=0

=
{
−Q(X, Y ), 0 6 X, Y 6 1,

0, (−∞ < X,Y < 0) ∪ (1 < X,Y < ∞),
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∂θ1

∂Z

∣∣∣
Z=δ

= K∗ ∂θ2

∂Z

∣∣∣
Z=δ

, −∞ < X,Y < ∞,
(1.7)

θ1(X, Y, δ) = θ2(X, Y, δ), −∞ < X,Y < ∞,

{θ1, θ2} → 0 at
√

X2 + Y 2 + Z2 →∞.

2. Solution of the Problem. In the boundary-value problem (1.7), we apply the double Fourier integral
transformation to the dimensionless variables X and Y [11]:

θj(ξ, η, Z) =
1
2π

∞∫
−∞

∞∫
−∞

θj(X, Y, Z) exp [i(ξX + ηY )] dX dY.

As a result, we obtain

d2 θj

dZ2
− æ2

j θj = 0, j = 1, 2; (2.1)

d θ1

dZ

∣∣∣
Z=0

= −Q(ξ, η); (2.2)

d θ1

dZ

∣∣∣
Z=δ

= K∗ d θ2

dZ

∣∣∣
Z=δ

; (2.3)

θ1(ξ, η, δ) = θ2(ξ, η, δ); (2.4)

θ2 → 0 at Z →∞, (2.5)

where

Q(ξ, η) =
1
2π

1∫
0

1∫
0

Q(X, Y ) exp [i(ξX + ηY )] dX dY ; (2.6)

æ2
j = ω2 − iξ Pej , j = 1, 2, ω2 = ξ2 + η2. (2.7)

The general solution of the differential equations (2.1) has the form

θj(ξ, η, Z) = Aj exp (−æjZ) + Bj exp (æjZ), (2.8)

where Aj(ξ, η) and Bj(ξ, η) (j = 1, 2) are unknown functions of the transformation parameters. The regularity
condition (2.5) implies that B2 = 0. Substituting solution (2.8) into the remaining boundary conditions (2.2)–(2.4),
we arrive at the following system of three linear algebraic equations for the unknown functions A1, A2, and B1:

æ1(A1 −B1) = Q(ξ, η),

λA1 exp (−æ1δ)− λB1 exp (æ1δ)−A2K
∗ exp (−æ2δ) = 0;

A1 exp (−æ1δ) + B1 exp (æ1δ)−A2 exp (−æ2δ) = 0. (2.9)

Here λ =
√

æ1/æ2.
The maximum temperature of the piecewise-homogeneous body is reached on the surface of the layer.

Therefore, we write the solution of the system of linear equations (2.9) only for the functions A1 and B1 included

in the transform θ1:

A1 = −Q(K∗ + λ) exp (æ1δ)/D, B1 = Q(K∗ − λ) exp (−æ1δ)/D;

D = æ1[(λ−K∗) exp (−æ1δ)− (λ + K∗) exp (æ1δ)]. (2.10)
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Substituting relations (2.10) for Z = 0 into solution (2.8), we obtain

θ1(ξ, η, 0) = θ0(ξ, η, 0)
1− γ(ξ, η)
1 + γ(ξ, η)

= θ0(ξ, η, 0)
[
1 + 2

∞∑
n=1

(−1)nγn(ξ, η)
]
; (2.11)

θ0(ξ, η, 0) = Q(ξ, η)/æ1, γ(ξ, η) = C exp (−2æ1δ), C = (K∗ − λ)/(K∗ + λ). (2.12)

The form of relation (2.11) indicates that in the space of the originals, the dimensionless maximum temper-
ature of the layer surface can be written as

θ1,max = θ0,max[1 + F (C, δ,Pe1)], (2.13)

where θ0,max is the dimensionless temperature of the surface of the half-space with the thermophysical properties
of the layer; −1 < C < 1 is a dimensionless parameter whose Fourier transform is defined by formula (2.12). The
function F (C, δ,Pe1) in relation (2.13) is unknown. However, taking into account formulas (2.11) and (2.12), it is
possible to construct its asymptotic expressions for the limiting values of the dimensionless layer thickness δ:

F (C, δ,Pe1) =

 2
∞∑

n=1

(−C)n = − 2C

1 + C
, δ → 0,

0, δ →∞
(2.14)

or

F (C, δ,Pe1) = − 2C

1 + C
F ∗(C, δ,Pe1), F ∗(C, δ,Pe1) =

{
1, δ → 0,

0, δ →∞.
(2.15)

In view of (2.14) and (2.15), from equality (2.13) we obtain

F ∗(C, δ,Pe1) =
1 + C

2C

(
1− θ1,max

θ0,max

)
. (2.16)

Thus, to determine the maximum temperature of the homogeneous body, it is necessary to know the function
F ∗(C, δ,Pe1). Because of the complex structure of the function γ(r, s) in (2.12), this problem cannot be solved for
arbitrary velocity of the heat flow. Therefore, we first construct solutions for the two limiting modes: stationary
heating (V ≈ 0 and 0 6 Pe1 < 0.4) and fast heating (Pe1 > 20) [12].

3. Stationary Heat-Conduction Problem. In this case, Pe1 = Pe2 = 0 and formulas (2.7) imply that√
ω2 − iPe1 = |ω| =

√
ξ2 + η2 as λ → 1. The parameter C in (2.12) becomes

C = (K∗ − 1)/(K∗ + 1). (3.1)

From relations (2.11), we obtain

θ1(ξ, η, 0) = θ0(ξ, η, 0) + 2
∞∑

n=1

(−C)n Gn(ξ, η, 0); (3.2)

θ0(ξ, η, 0) = Q(ξ, η)/|ω|, Gn(ξ, η, 0) = (Q(ξ, η)/|ω|) exp (−2nδ|ω|). (3.3)

We consider in more detail the heating of the layer surface by a uniform heat flow of intensity q(x, y) = q0

(Q(X, Y ) = 1). Taking into account the value of the integral (see [13])
∞∫

−∞

∞∫
−∞

exp (−2nδ|ω|)
|ω|

exp [−i(ξX + ηY )] dξ dη =
1√

X2 + Y 2 + 4n2δ2

and using the convolution theorem for the Fourier integral transformation, from relations (3.3) we obtain

Gn(X, Y, 0) =
1
2π

1∫
0

1∫
0

dX ′ dY ′√
(X −X ′)2 + (Y − Y ′)2 + 4n2δ2

. (3.4)

Because of the symmetry of the problem, the maximum temperature is reached at the center of the heating
region on the layer surface. After integration for X = Y = 0.5, formula (3.4) becomes
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Fig. 2. Ratio of the maximum stationary temperatures of the piecewise-homogeneous and inhomo-
geneous half-spaces versus dimensionless layer thickness.

Fig. 3. Function F ∗(C, δ, 0) versus relative layer thickness for various values of the parameter C.

Gn,max ≡ Gn

(1
2
,
1
2
, 0

)
=

1
π

[
ln

∣∣∣√2 + 16n2δ2 + 1√
2 + 16n2δ2 − 1

∣∣∣− 4nδ arctan
1

4nδ
√

2 + 16n2δ2

]
. (3.5)

Setting δ = 0 in equalities (3.3), we obtain θ0(ξ, η, 0) = Gn(ξ, η, 0). Then, from equality (3.5), we obtain the
known value of the dimensionless maximum temperature of the homogeneous half-space [4]

θ0,max =
1
π

ln
∣∣∣√2 + 1√

2− 1

∣∣∣ =
2
π

ln |
√

2 + 1| ≈ 1√
π

. (3.6)

The maximum dimensionless temperature of the piecewise-homogeneous body is found from the solution of
(3.2):

θ
(s)
1,max = θ

(s)
0,max + 2

∞∑
n=1

(−C)nGn,max. (3.7)

Here θ
(s)
0,max is calculated by formula (3.6) and Gn,max by formula (3.5); the superscript (s) indicates that the solution

considered is stationary.
Substituting Eq. (3.7) into (2.16), we obtain

F ∗(C, δ, 0) = − 1 + C

Cθ
(s)
0,max

∞∑
n=1

(−C)nGn,max. (3.8)

Curves of the ratio θ
(s)
max = θ

(s)
1,max/θ

(s)
0,max versus dimensionless layer thickness δ for various values of the

dimensionless parameter C in (3.1) are shown in Fig. 2. We note that for C → −1 (K∗ → 0), the thermal
conductivity of the layer is much higher that the thermal conductivity of the foundation (K1 � K2), and, in
contrast, for C → 1 (K∗ → ∞), we have K1 � K2. As the parameter C increases with fixed thickness of the
layer δ, the maximum temperature decreases. The highest temperature is reached in the case of a heat-conducting
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layer applied onto a thermally insulated half-space. If the thermal conductivity of the layer is higher (lower) than that
of the foundation, an increase in the layer thickness leads to a decrease (increase) in the temperature. For δ > 3.5
in both cases, one can ignore the effect of the layer on the maximum temperature of the piecewise-homogeneous
body and use solution (3.6) for a homogeneous half-space in the calculations.

In view of equality (2.16), the maximum temperature can also be determined using the function F ∗(C, δ, 0)
by the formula

θ
(s)
1,max = θ

(s)
0,max

[
1− 2C

1 + C
F ∗(C, δ, 0)

]
, θ

(s)
0,max =

1√
π

. (3.9)

In (3.8), the function F ∗(C, δ, 0) decreases monotonically with increase in the parameter δ (Fig. 3). A de-
crease in the relative thermal conductivity of the layer K∗ [the parameter C in (3.1)] with its fixed thickness δ

leads to a decrease in the values of the function F ∗(C, δ, 0). Knowing the thermophysical (C) and geometrical (δ)
parameters of the problem, we find the value of the function F ∗(C, δ, 0) from the corresponding curve in Fig. 3.
Substituting it into formula (3.9), we obtain the maximum temperature of the piecewise-homogeneous body.

Let us also consider the case of heating of the surface of a piecewise-homogeneous body by a heat flow
distributed uniformly over a circle of radius 0.5a on the boundary surface. The solution of the corresponding
stationary axisymmetric heat-conduction problem is obtained using the zero-order Hankel integral transformation
with respect to the dimensionless variable ρ = 2r/a, where r is the radial component of the cylindrical coordinate
system (r, ϕ, z) with origin at the center of the heating circle.

The maximum temperature in this case is determined from formula (3.7) for

Gn,max =

∞∫
0

exp (−nδξ)
ξ

J1(ξ) dξ =
√

n2δ2 + 1− nδ, θ0,max =

∞∫
0

J1(ξ)
ξ

dξ = 1

[J1(ξ) is the first-order Bessel function of the first kind].
4. Fast Heating. The fast heating regime occurs for Pe1 > 20 and is characterized by the fact that the

temperature-gradient variation in the x and y directions (∂2Tj/∂x2 and ∂2Tj/∂y2) in the heat-conduction equation
(1.1) can be ignored [14]. Then, from relation (2.1) it follows that ω2 → 0 and

√
ω2 − iPe1 →

√
−iPe1, and the

parameter C in (2.12) becomes

C =
K∗ − λ

K∗ + λ
, λ =

√
Pe1

Pe2
=

√
k2

k1
. (4.1)

Thus, we have a two-dimensional (in the variables X and Z) quasistationary heat-conduction problem for
a piecewise-homogeneous half-space heated in a zone 0 6 X 6 1 on the surface Z = 0 by a distributed heat flow
Q(X) = q(aX)/q0. Solution of this problem using the Fourier integral transformation with respect to the variable
X yields the temperature transform on the layer surface Z = 0:

θ1(ξ, 0) = θ0(ξ, 0)
[
1 + 2

∞∑
n=1

(−1)nγn(ξ)
]
,

θ0(ξ, 0) = Q(ξ)/
√
−iξ Pe1, γ(ξ) = C exp (−2δ

√
−iξ Pe1 ), (4.2)

Q(ξ) =
1√
2π

1∫
0

Q(X) exp (iξX) dX.

Using the convolution theorem for the integral Fourier transformation, from relations (4.2) we obtain

θ1(X, 0) =
1√
2π

1∫
0

Q(X ′)

∞∫
−∞

1√
−iξ Pe1

[
1 + 2

∞∑
n=1

(−C)n exp (−2nδ
√
−iξ Pe1 )

]
exp (−iξ(X −X ′)) dξ dX ′.(4.3)

Taking into account the value of the integral (see [13])
∞∫

−∞

exp (−2nδ
√
−iξ Pe1)√

−iξ Pe1
exp (−iξX) dξ =

√
π

Pe1 X
exp

(
− n2δ2 Pe1

X

)
, n > 0,
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from equality (4.3) we obtain the following computational formula for the dimensionless temperature on the surface
of the piecewise-homogeneous half-space:

θ1(X, 0) =



0, X 6 0,

1
2
√

π Pe1

X∫
0

Q(X ′)H(X −X ′) dX ′, 0 6 X 6 1,

1
2
√

π Pe1

1∫
0

Q(X ′)H(X −X ′) dX ′, X > 1,

(4.4)

where

H(X) =
1√
X

[
1 + 2

∞∑
n=1

(−C)n exp
(
− n2δ2P1

X

)]
. (4.5)

In the case of constant intensity of the heat flow Q(x) = 1, using the value of the integral

X∫
0

1√
X −X ′

exp
(−n2δ2 Pe1

X −X ′

)
dX ′

= 2
√

X exp
(
− n2δ2 Pe1

X

)
− 2nδ

√
π Pe1 erfc

(nδ
√

Pe1√
X

)
, n > 0

from relations (4.4) and (4.5) we obtain

θ1(X, 0) = θ0(X, 0)
[
1 + 2

∞∑
n=1

(−C)nRn(X)
]
, 0 6 X 6 1,

θ0(X, 0) =
√

X

π Pe1
, Rn(X) = exp

(
− n2δ2 Pe1

X

)
− nδ

√
π Pe1

X
erfc

(
nδ

√
Pe1

X

)
.

(4.6)

The maximum value of the temperature is reached at the right (exit) end of the heating zone [12]. Then,
formulas (4.6) for X = 1 imply that

θ
(f)
1,max ≡ θ1(1, 0) = θ

(f)
0,max

[
1 + 2

∞∑
n=1

(−C)nRn,max

]
(4.7)

θ
(f)
0,max = 1/

√
π Pe1, Rn,max = exp (−n2δ2 Pe1)− nδ

√
π Pe1 erfc (nδ

√
Pe1 ), (4.8)

where the superscript (f) indicates that the fast heating regime is considered. We note that for the maximum
dimensionless temperature θ

(f)
0,max of a homogeneous half-space, formula (4.8) was first obtained in [14].

Solution (4.7), (4.8) can also be written as

θ
(f)
1,max = θ

(f)
0,max

[
1− 2C

1 + C
F ∗(C, δ,Pe1)

]
, F ∗(C, δ,Pe1) = − 1 + C

Cθ
(f)
0,max

∞∑
n=1

(−C)nRn,max. (4.9)

For δ → 0, formula (4.8) implies that Rn,max → 1, and from relation (4.9), we obtain F ∗(C, 0,Pe1) = 1. If
δ → ∞, then Rn,max → 0 and F ∗(C,∞,Pe1) → 0. Thus, the function F ∗(C, δ,Pe1) decreases monotonically with
increase in the parameter δ and takes values between zero and unity.

The dependence of the ratio θ
(f)
max = θ

(f)
1,max/θ

(f)
0,max on the dimensionless complex δ2 Pe1 is shown in Fig. 4.

The same dependence for the function F (C, δ,Pe1) in (4.9) is given in Fig. 5 [the parameter C is calculated from
(4.1)]. It is obvious that for δ2 Pe1 > 1 (δ > 1/

√
Pe1), the effect of the layer on the maximum temperature of the

piecewise-homogeneous body can be ignored. At the same time, this indicates that the effective heating depth (the
distance from the layer surface at which the temperature is 5% of the maximum surface temperature) decreases
with increase in the velocity of motion of the heat flow.
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Fig. 4. Ratio of the maximum temperatures of piecewise-homogeneous and inhomogeneous half-
spaces versus dimensionless layer thickness for fast heating.

Fig. 5. Function F ∗(C, δ, Pe1) versus increasing dimensionless complex δ2 Pe1 for various values of
the parameter C.

5. Solution for the Intermediate Values of the Peclet Number (0.4 666 Pe1 666 20). In the cases of
stationary and fast heating, heat transfer in the solid occurs primarily by the conductive and convective mechanisms,
respectively [8]. Under the assumption that for the intermediate values of the heat-flow velocity, these types of heat
transfer operate in parallel and by analogy with the formula for the electric-current resistance for parallel conductors,
Archard [9] proposed the following a priori interpolation formula for the maximum temperature of a homogeneous
half-space for intermediate values of the Peclet number 0.4 6 Pe1 6 20:

1/θ0,max = 1/θ
(s)
0,max + 1/θ

(f)
0,max. (5.1)

Here the maximum temperatures for stationary (θ(s)
0,max) and fast (θ(f)

0,max) heating of the half-space are defined by
formulas (3.7) and (4.7), respectively.

Later, Greenwood [10] modified formula (5.1) by summing the quantities that are the reverse of the squared
maximum temperatures:

1/θ2
0,max = 1/(θ(s)

0,max)
2 + 1/(θ(f)

0,max)
2. (5.2)

Numerical analysis showed [10] that the results obtained using empirical formula (5.2) almost coincide with
the values of the maximum temperature found from the exact solution [4].

In the case of a piecewise-homogeneous half-space, by analogy with formulas (5.1) and (5.2), we write

1/θ1,max = 1/θ
(s)
1,max + 1/θ

(f)
1,max; (5.3)

1/θ2
1,max = 1/(θ(s)

1,max)
2 + 1/(θ(f)

1,max)
2. (5.4)

There is another method of interpolating between the stationary and fast heating regimes. For 0 6 Pe1 6 0.4,
according to (3.8), we have θ

(s)
0,max = 1/

√
π, and for Pe1 > 20, from relation (4.8) we obtain θ

(f)
0,max = 1/

√
π Pe1. Then,
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TABLE 1

Pe1 = Pe2 θ
(s)
1,max in (3.8) θ

(f)
1,max in (4.7) θ1,max in (5.3) θ1,max in (5.4) θ1,max in (5.5)

0.1 0.91 — 0.80 0.90 0.89
0.4 0.91 — 0.71 0.88 0.84
1 — — 0.62 0.83 0.77
5 — — 0.42 0.59 0.51
10 — — 0.32 0.44 0.39
20 — 0.32 0.24 0.30 0.28
30 — 0.25 0.19 0.24 0.23
50 — 0.18 0.15 0.17 0.17

for the intermediate values of the Peclet number (0.4 6 Pe1 6 20), the maximum temperature of a homogeneous
half-space can be determined from the approximate formula

θ0,max = 1/
√

π(1 + Pe1) ,

which for Pe1 → 0 and Pe1 � 1 agrees with the results given above.
Similarly, in the case of a piecewise-homogeneous half-space, we assume that

θ1,max = θ0,max

[
1− 2C

1 + C
F ∗(C, δp, 0)

]
. (5.5)

The value of the function F ∗(C, δp, 0) is calculated by formula (3.8) for

C =
K∗ − λ

K∗ + λ
, λ =

√
1 + Pe1

1 + Pe2
(5.6)

and with replacement of the dimensionless layer thickness δ by the complex δp = δ2
√

1 + Pe1.
Table 1 gives calculated maximum dimensionless temperatures of a piecewise-homogeneous half-space for

various values of the Peclet number Pe1 = Pe2 for δ = 0.1 and K∗ = 0.5. The data show that for the intermediate
values of the Peclet number, the best agreement is obtained for the maximum temperatures found from Greenwood’s
formula (5.4) and using the procedure proposed in the present paper [formulas (5.5) and (5.6)]. This is also supported
by the calculation results presented in Figs. 6 and 7.

6. Results and Conclusions. It was established that for the intermediate (moderate) values of the
Peclet number, the effect of the layer on the maximum temperature of the compound body is determined by two
dimensionless parameters — C and δp in (5.6). The parameter −1 < C < 1, in turn, depends on the thermophysical
properties of the materials of the layer and the foundation, the geometrical dimensions of the heating region, and
the velocity of its motion. The case C < 0 corresponds to an increase and the case C > 0 to a decrease in the
maximum temperature of the piecewise-homogeneous half-space compared to the homogeneous half-space; in the
case where the materials of the layer and half-space are identical, C = 0.

The parameter δp depends on the relative layer thickness δ and the Peclet numbers Pe1. For small values
of δp, the function F (C, δp, 0) ≈ 1, and from relation (5.5) we obtain the following estimate for the maximum
temperature of the compound body:

θ1,max = θ0,max
1− C

1 + C
= θ0,max

λ

K∗ . (6.1)

[The parameter λ is calculated by formula (4.1), and the relative thermal conductivity of the half-space and the
layer K∗ by formula (1.6).] Converting to the dimensional quantities in formula (6.1) and taking into account that
λ → 1 as Pej → 0 (j = 1, 2), we obtain the maximum temperature of the homogeneous (made of the foundation
material) half-space:

T1,max = (q0a/K2)θ0,max.

Hence, for small values of the layer thickness and Pe1, the effect of the layer on the maximum temperature can be
ignored.
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Fig. 6. Dimensionless maximum temperature θmax versus relative layer thickness δ at Pe1 = Pe2 = 1: the
solid and dashed curves refer to K∗ = 0.5 and 2, respectively; curves 1, 2, and 3 refer to calculations using
formulas (5.3), (5.4), and (5.5), respectively.

Fig. 7. Dimensionless maximum temperature θmax versus Peclet number (Pe1 = Pe2 = 1) for K∗ = 0.5:
curves 1–4 refers to calculations using formulas (4.7), (5.3), (5.4), and (5.5), respectively.

For large values of δp and Pe1, we obtain function F (C, δp, 0) ≈ 0. Then, the solutions for the piecewise-
homogeneous semi-infinite body and the homogeneous (with thermophysical properties of the layer) half-space
coincide:

T1,max = (q0a/K1)θ0,max.

The proposed technique for determining the parameter δp and the function F (C, δp, 0) by formulas (3.8) and
(5.6) can be used to estimate the effect of the layer material on the maximum temperature of piecewise-homogeneous
bodies. It is found that for larger values of the Peclet number (Pe > 20) and fixed layer thickness, the external heat
flow is completely absorbed by the layer, i.e., a skin effect takes place, in which the thermophysical properties of
the foundation material do not influence the maximum temperature of the compound body. The limiting value of
the parameter δp for which the heat is entirely absorbed by the layer is equal to unity. Hence, the effective heating
depth can be calculated by the formula

d = a/
√

1 + Pe1, Pe1 > 0.4.

From (1.6) and (5.5) it follows that the ratio of the maximum surface temperature of the piecewise-
homogeneous body T1,max to that of the homogeneous body T2,max is

α =
T1,max

T2,max
=

K∗

λ

[
1− 2C

1 + C
F ∗(C, δp, 0)

]
. (6.2)

If the layer thickness and the Peclet numbers are small enough, then, using relation (6.1) from formula (6.2),
we obtain α → 1. At the same time, for large and intermediate values of the layer thickness and the Peclet number,
the quantity α can be estimated by the approximate formula α ≈ K∗/λ [the parameter λ is calculated by formulas
(4.1) for Pe1 > 20 and formulas (5.6) for 0.4 6 Pe1 6 20].
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The function F ∗(C, δp, 0) plays an important role in determining the maximum temperature not only
on the layer surface but also at the interface between the materials of the conjugate bodies. We denote by
β = T2,max|z=d/T1,max|z=0 the ratio of the maximum temperatures of the foundation and the layer. If F ∗(C, δp, 0)
≈ 1, then, as noted above, the maximum temperature of the compound body is determined only by the thermo-
physical properties of the foundation and, hence, β → 1. If F ∗(C, δp, 0) ≈ 0, then the maximum temperature is
affected primarily by the properties of the layer material and β → 0.

Numerical analysis of the problem showed that when the shape of the heating region changes from square
to circular with the same surface area, the maximum temperature of the compound body changes only slightly (by
not more than 5%).

This work was performed within the framework of the complex scientific topic W/WM/1/04 of Bialystok
Polytechnic (Poland).
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